SPECIFICATIONS

PXIe-4322

16-Bit, 8-Channel, 250 kS/s Ch-Ch Isolated PXI Analog Output Module

This document lists specifications for the PXIe-4322 16-Bit, 8-Channel, 250 kS/s Ch-Ch Isolated PXI Analog Output module. These specifications are typical for the range of 0 °C to 55 °C unless otherwise stated. The system must be allowed to warm up for 15 minutes to achieve the rated accuracy. All specifications are subject to change without notice. Visit *ni.com/manuals* for the most current specifications and product documentation.

Note To maintain forced-air cooling for PXI/PXI Express devices, make sure the PXI/PCI chassis fan speed is set to HIGH, the foam fan filters are removed if present, and the empty slots contain slot blockers and filler panels. For more information about cooling, refer to the *Maintain Forced-Air Cooling Note to Users*.

Number of channels	8 analog output channels	
DAC resolution	16 bits	
Type of DAC	R-2R	
Monotonicity	16 bits	
DNL	±1 LSB max	
INL (best fit)	±4 LSBs max	
Power-on output state ¹		
Voltage mode	0 V	
Current mode	0 mA	

Analog Characteristics

Note You can program the power-on output states. Refer to your software documentation for information about programming the power-on output states using NI-DAQmx with LabVIEW or other National Instruments application development environments (ADEs).

 $^{^1\,}$ When the output stage powers on, a current glitch occurs for 1 ms peaking at 5 $\mu A.$ When the output stage powers off, a current glitch occurs for 3 ms peaking at 5 $\mu A.$

Power-off output state	High impedance
Protection	
Overvoltage	±120 VDC
Short circuit	Indefinitely
Update rate	
Maximum	250 kS/s per channel
Minimum	No minimum
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns
Data transfers	DMA (scatter-gather), programmed I/O
Output FIFO size	8,191 samples shared among channels used

AO waveform modes

- Nonperiodic waveform
- Periodic waveform regeneration mode from onboard FIFO
- Periodic waveform regeneration from host buffer including dynamic update

Voltage Mode

Output voltage range ²		
Nominal	±16 V	
Minimum	±16.57 V	
Typical	±16.70 V	
Maximum	±16.83 V	
Current drive	±20 mA per channel max	
Output impedance	25 mΩ	
Noise (rms)		
10 Hz to 1 kHz bandwidth	$30 \ \mu V_{rms}$	
10 Hz to 300 kHz bandwidth	$250 \ \mu V_{rms}$	
10 Hz to 20 MHz bandwidth	$500 \ \mu V_{rms}$	
Slew rate	±10 V/µs	

² Refer to the *Increasing Output Voltage Range in Voltage Mode* section in the *NI PXIe-4322 User Manual* for information about how to increase the nominal output voltage range by connecting multiple voltage channels in series.

Crosstalk

Channel-to-channel @ 10 kHz	-100 dB
Common-mode voltage @ 60 Hz	-120 dB
Settling time	
1000 pF load, to 1 LSB	
20 V step	20 µs
1 V step	12 µs
0.1 V step	10 µs
500 Ω 100 pF, to 1 LSB	
20 V step	20 µs
Capacitive drive	4500 pF

Accuracy³

Measurement Conditions	Percent of Output (Gain Error)	Percent of Range [*] (Offset Error)
Calibrated, max (0 °C to 55 °C)	0.076%	0.018%
Calibrated, max (0 °C to 40 °C)	0.054%	0.014%
Calibrated, max (23 °C \pm 5 °C)	0.014%	0.007%
Calibrated, typ (23 °C \pm 5 °C)	0.010%	0.003%
* Range equals 16 V.		

Stability

Gain drift	7 ppm/°C
Offset drift	$25 \ \mu V/^{\circ}C$

Absolute Voltage Output Accuracy Equation

AbsoluteVoltageAccuracy = Output * (GainError) + Range * (OffsetError)

Absolute Voltage Output Accuracy Example

For a 10 V voltage output, the absolute output accuracy for an external temperature range of 18 °C to 28 °C is as follows:

GainError = 0.014%

³ Accuracies listed are warranted for the conditions described in the table for up to one year from the module external calibration.

 $\label{eq:offsetError} OffsetError = 0.007\%$ AbsoluteAccuracy = 10 V * (GainError) + 16 V * (OffsetError) = 2.52 mV

Current Mode

Output current range ⁴	
Nominal	±20 mA
Minimum	±20.6 mA
Typical	±20.9 mA
Maximum	±21.1 mA
Compliance voltage	±16 V per channel max
Output impedance	100 MΩ
Noise (rms)	
10 Hz to 1 kHz bandwidth	50 nA
10 Hz to 300 kHz bandwidth	600 nA
Slew rate	$\pm 20 \text{ mA/}\mu\text{s}$
Crosstalk	
Channel-to-channel @ 1 kHz	-100 dB
Common-mode voltage @ 60 Hz	50 nA/V
Settling time	
100Ω load	
Full-scale step to 2 LSB	20 µs
800 Ω load	
Full-scale step to 2 LSB	25 μs
2 mA step to 1 LSB	15 μs
Inductive drive	10 µH

⁴ Refer to the *Increasing Output Current Range in Current Mode* section of the *NI PXIe-4322 User Manual* for information about how to increase the nominal output current range by connecting current channels in parallel.

Accuracy⁵

Measurement Conditions	Percent of Output (Gain Error)	Percent of Range [*] (Offset Error)
Calibrated, max (0 °C to 55 °C)	0.12%	0.05%
Calibrated, max (0 °C to 40 °C)	0.09%	0.035%
Calibrated, max (23 °C ±5 °C)	0.033%	0.019%
Calibrated, typ (23 °C \pm 5 °C)	0.028%	0.004%
* Range equals 20 mA.		

Stability

Gain drift	±15 ppm/°C
Offset drift	±75 nA/°C

Absolute Current Output Accuracy Equation

AbsoluteCurrentAccuracy = Output * (GainError) + Range * (OffsetError)

Absolute Current Output Accuracy Example

For a 10 mA current output, the absolute output accuracy for an external temperature range of 18 °C to 28 °C is as follows:

 $\label{eq:GainError} GainError = 0.033\%$ OffsetError = 0.019% $AbsoluteAccuracy = 10\ mA*(GainError) + 20\ mA*(OffsetError) = 7.1\ \mu A$

Synchronization

Reference clock source

PXIe_DSTAR<A.. B>, PXI_STAR, PXIe_Clk100, PXI_TRIG<0..7>

⁵ Accuracies listed are warranted for the conditions described in the table for up to one year from the module external calibration.

Digital Triggers

Source	PXI_TRIG<07>, PXI_STAR, PXIe_DSTAR <ab> PFI<01></ab>
Purpose	Start Trigger, Pause Trigger
Polarity	Software-selectable
Debounce filter settings	Disable, 90 ns, 5.12 µs, 2.56 ms, custom interval

Clocking

Source	Onboard Clock, PXI_TRIG<07>, PXI_STAR, PXIe_DSTAR <ab>, PXIe_Clk100 (RefClk only)</ab>	
Destination	Sample Clock, Sample Clock Timebase, Reference Clock	
Polarity	Software-selectable (except Reference Clock)	
Debounce filter settings (Sample Clock only)	Disable, 90 ns, 5.12 µs, 2.56 ms, custom interval	

Reference clock locking frequencies

Reference Signal	Locking Input Frequency (MHz)		
	10	20	100
PXIe_DSTAR 	1	1	\checkmark
PXI_STAR	1	1	_
PXIe_Clk100			\checkmark
PXI_TRIG<07>	\checkmark	\checkmark	_

Note NI does not recommend locking to non-selected frequencies.

Output Timing Signals

Source	Start Trigger, Pause Trigger, Sample Clock, various derived timebases and clocks
Destination	PXI_TRIG<07> PXIe_DSTARC
Polarity	Software-selectable

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev. 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	1 analog input

PXIe-4322 modules may be installed in PXI Express slots or PXI Express hybrid slots.

Calibration

Recommended warm-up time	15 minutes
Calibration interval	1 year

Power Requirements

+3.3 V	800 mA
+12 V	700 mA

Physical Requirements

Dimensions	Standard 3U PXIe, 16 cm \times 10 cm (6.3 in \times 3.9 in)
Weight	161 g (5.7 oz)
I/O connector	96-pin male DIN 41612/IEC 60603-2
	connector

Note Clean the hardware with a soft, nonmetallic brush. Make sure that the hardware is completely dry and free from contaminants before returning it to service.

Environmental Specifications

Maximum altitude	2,000 m (800 mbar), at 25 °C ambient temperature
Pollution degree	2
Indoor use only.	

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC-60068-2-56.)
Storage Environment	
Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)
Relative humidity range	5% to 95% noncondensing (Tested in accordance with IEC-60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Non-operating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL- PRF-28800F, Class 3.)

Safety Voltage

Connect only voltages that are within the following limits:	
Between any two terminals of an isolated channel	±120 VDC
Isolation	
Channel to channel	
Continuous	$300 V_{rms}$, Measurement Category II (Basic)
Withstand	1,500 V_{rms} , verified by a 5 s dielectric withstand test
Channel to earth ground	
Continuous	300 V_{rms} , Measurement Category II
Withstand	2,300 V_{rms} , verified by a 5 s dielectric withstand test

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Caution Do not use for measurements within Measurement Categories III or IV.

Attention Ne pas utiliser pour effectuer des mesures dans les catégories de mesure III ou IV.

Caution The protection provided by the PXIe-4322 can be impaired if it is used in a manner not described in this document.

Attention La protection fournie par le PXIe-4322 peut être altérée s'il est utilisé d'une autre façon que celle décrite dans ce document.

Caution When hazardous voltages (>30 $V_{rms}/42.4 V_{pk}/60 \text{ VDC}$) are present on any terminal, safety low-voltage (\leq 30 V_{rms} /42.4 V_{pk} /60 VDC) cannot be connected to any other terminal.

Attention En présence de tensions dangereuses (> 30 Veff/42,4 Vpic/60 VCC) sur l'une des bornes, une basse tension de sécurité (≤ 30 Veff/42,4 Vpic/60 VCC) ne peut être raccordée à aucune autre borne.

Caution Do not supply hazardous voltages (>30 $V_{rms}/42.4 V_{nk}/60 VDC$) to the terminal block without the terminal block being connected to the PXIe-4322.

Attention Ne pas appliquer de tensions dangereuses (> 30 Veff/42,4 Vpic/60 VCC) au bornier sans que ce dernier ne soit connecté au PXIe-4322.

PXIe-4322 Specifications | © National Instruments | 9

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Product Certifications and Declarations* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the *Product Certifications and Declarations* section.

CE Compliance CE

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit *ni.com/ product-certifications*, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Commitment to the Environment* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The NI website is your complete resource for technical support. At *ni.com/support*, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for information about the services NI offers.

Visit *ni.com/register* to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For support in the United States, create your service request at *ni.com/support* or dial 1 866 ASK MYNI (275 6964). For

support outside the United States, visit the *Worldwide Offices* section of *ni.com/niglobal* to access the branch office websites, which provide up-to-date contact information.

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Helps/Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7015.

© 2013-2019 National Instruments. All rights reserved.