DEVICE SPECIFICATIONS

NI 6361

X Series Data Acquisition: 2 MS/s, 16 AI, 24 DIO, 2 AO

Français	Deutsch	日本語	한국어	简体中文	
	ni.com/manual:		S		

The following specifications are typical at 25 °C, unless otherwise noted. For more information about the NI 6361, refer to the *X Series User Manual* available at *ni.com/manuals*.

Analog Input

Number of channels	8 differential or 16 single ended
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to the AI Absolute Accuracy section.
Sample rate	
Single channel maximum	2.00 MS/s
Multichannel maximum (aggregate)	1.00 MS/s
Minimum	No minimum
Timing resolution	10 ns
Timing accuracy	50 ppm of sample rate
Input coupling	DC
Input range	±0.1 V, ±0.2 V, ±0.5 V, ±1 V, ±2 V, ±5 V, ±10 V
Maximum working voltage for analog inputs (signal + common mode)	±11 V of AI GND
CMRR (DC to 60 Hz)	100 dB
Input impedance	
Device on	
AI+ to AI GND	$>$ 10 G Ω in parallel with 100 pF
AI- to AI GND	>10 GΩ in parallel with 100 pF

820 Ω
820 Ω
±100 pA
-75 dB
-95 dB
1.7 MHz
2,047 samples
4,095 entries
DMA (scatter-gather), programmed I/O
USB Signal Stream, programmed I/O

Settling Time for Multichannel Measurements

Overvoltage protection for all analog input and sense channels

Input current during overvoltage condition

Device on Device off

Range	±60 ppm of Step (±4 LSB for Full-Scale Step)	±15 ppm of Step (±1 LSB for Full-Scale Step)
± 10 V, ±5 V, ±2 V, ±1 V	1 μs	1.5 μs
±0.5 V	1.5 μs	2 μs
±0.2 V, ±0.1 V	2 μs	8 μs

 ± 25 V for up to two AI pins

 ± 15 V for up to two AI pins

±20 mA max/AI pin

Typical Performance Graphs

Figure 1. Settling Error versus Time for Different Source Impedances

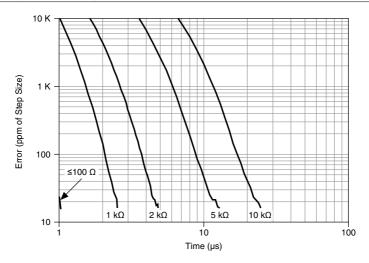
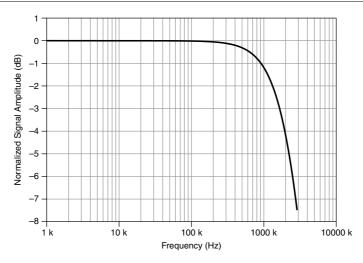
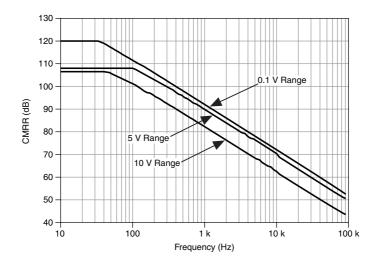




Figure 2. Al <0..15> Small Signal Bandwidth

Al Absolute Accuracy

Table 1. Al Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (µV)
10	-10	48	13	21	315	1,660
5	-5	55	13	21	157	870
2	-2	55	13	24	64	350
1	-1	65	17	27	38	190
0.5	-0.5	68	17	34	27	100
0.2	-0.2	95	27	55	21	53
0.1	-0.1	108	45	90	17	33

For more information about absolute accuracy at full scale, refer to the AI Absolute Accuracy Example section.

Gain tempco	13 ppm/°C
Reference tempco	1 ppm/°C
INL error	60 ppm of range

Note Accuracies listed are valid for up to two years from the device external calibration.

Al Absolute Accuracy Equation

 $AbsoluteAccuracy = Reading \cdot (GainError) + Range \cdot (OffsetError) + NoiseUncertainty$ $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) +$ ReferenceTempco · (TempChangeFromLastExternalCal) $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal)$ + INLError NoiseUncertainty = $\frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}}$ for a coverage factor of 3 σ and averaging 10,000 points.

Al Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- $TempChangeFromLastExternalCal = 10 \, ^{\circ}C$
- TempChangeFromLastInternalCal = 1 °C
- number of readings = 10,000
- $CoverageFactor = 3 \sigma$

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

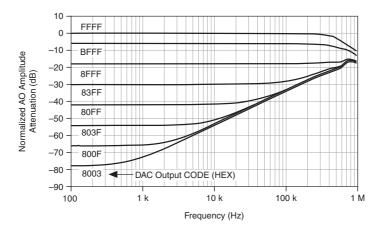
GainError = 48 ppm + 13 ppm · 1 + 1 ppm · 10 = 71 ppm
OffsetError = 13 ppm + 21 ppm · 1 + 60 ppm = 94 ppm
Noise Uncertaintty =
$$\frac{315 \,\mu V}{\sqrt{10,000}}$$
 = 9.4 μV

AbsoluteAccuracy =
$$10 \text{ V} \cdot (GainError) + 10 \text{ V} \cdot (OffsetError) + NoiseUncertainty = 1,660 \ \mu\text{V}$$

Analog Triggers

Number of triggers	1
Source	AI <015>, APFI 0
Functions	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Source level	
AI <015>	±Full scale
APFI 0	±10 V
Resolution	16 bits
Modes	Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering
Bandwidth (-3 dB)	
AI <015>	3.4 MHz
APFI 0	3.9 MHz
Accuracy	$\pm 1\%$ of range
APFI 0 characteristics	
Input impedance	10 kΩ
Coupling	DC
Protection, power on	±30 V
Protection, power off	±15 V

Analog Output


Number of channels	2
DAC resolution	16 bits
DNL	±1 LSB
Monotonicty	16 bit guaranteed
Maximum update rate (simultaneous)	
1 channel	2.86 MS/s
2 channels	2.00 MS/s
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns

Output coupling DC Output coupling DC Output impedance 0.2Ω Overdrive protection $\pm 25 \text{ mA}$ Overdrive protection $\pm 25 \text{ W}$ Overdrive current 26 mA Power-on state $\pm 5 \text{ mV}$ Power-on/off glitch PCIe/PXIe 1.5 V peak for 200 ms USB 1.5 V for 1.2 s , typical behavior 1.5 V peak for 200 ms Output FIFO size 1.5 W samples shared among channels used Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes 1.5 W Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 µs Slew rate 20 V/µs Glitch energy at midscale transition, $\pm 10 \text{ V}$ range External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$ Range $\pm 11 \text{ V}$	0. 45. 45.55.55	110 X 15 X 1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Output impedance 0.2Ω Output current drive $\pm 5 \text{ mA}$ Overdrive protection $\pm 25 \text{ V}$ Overdrive current 26 mA Power-on state $\pm 5 \text{ mV}$ Power-on/off glitch $\pm 5 \text{ mV}$ Power-on/off glitch $\pm 5 \text{ mV}$ POLe/PXIe 1.5 V peak for 200 ms USB 1.5 V for 1.2 s , typical behavior 1 V Output FIFO size $8.191 \text{ samples shared among channels used}$ Data transfers DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, $\pm 10 \text{ V}$ · s range $\pm 20 \text{ V/μs}$ External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	Output range	±10 V, ±5 V, ±external reference on APFI 0
Output current drive ± 5 mA Overdrive protection ± 25 V Overdrive current 26 mA Power-on state ± 5 mV Power-on/off glitch ± 5 mV PCIe/PXIe 1.5 V peak for 200 ms USB 1.5 V for 1.2 s, typical behavior I Output FIFO size 8.191 samples shared among channels used Data transfers PCIe/PXIe USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, ± 10 V range 10 nV · s External Reference APFI 0 characteristics Input impedance 10 kΩ Coupling DC Protection, device on ± 30 V Protection, device off ± 15 V	· · · ·	DC
Overdrive protection ±25 V Overdrive current 26 mA Power-on state ±5 mV Power-on/off glitch 1.5 V peak for 200 ms USB 1.5 V for 1.2 s, typical behavior¹ Output FIFO size 8,191 samples shared among channels used Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, ±10 V range 10 nV · s External Reference APFI 0 characteristics Input impedance 10 kΩ Coupling DC Protection, device on ±30 V Protection, device off ±15 V	Output impedance	0.2 Ω
Overdrive current 26 mA Power-on state ±5 mV Power-on/off glitch 1.5 V peak for 200 ms USB 1.5 V for 1.2 s, typical behavior¹ Output FIFO size 8,191 samples shared among channels used Data transfers DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, ±10 V range 10 nV · s External Reference APFI 0 characteristics Input impedance 10 kΩ Coupling DC Protection, device on ±30 V Protection, device off ±15 V	Output current drive	±5 mA
Power-on state ±5 mV Power-on/off glitch PCIe/PXIe 1.5 V peak for 200 ms USB 1.5 V for 1.2 s, typical behavior¹ Output FIFO size 8,191 samples shared among channels used Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, ±10 V range External Reference APFI 0 characteristics Input impedance 10 kΩ Coupling DC Protection, device on ±30 V Protection, device off ±15 V	Overdrive protection	±25 V
Power-on/off glitch PCIe/PXIe $1.5 \text{ V peak for } 200 \text{ ms}$ USB $1.5 \text{ V for } 1.2 \text{ s, typical behavior}^1$ Output FIFO size $8,191 \text{ samples shared among channels used}$ Data transfers DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) $2 \mu s$ Slew rate 20 V/μs Glitch energy at midscale transition, $\pm 10 \text{ V}$ $10 \text{ nV} \cdot s$ range $10 \text{ k}\Omega$ External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	Overdrive current	26 mA
PCIe/PXIe 1.5 V peak for 200 ms USB 1.5 V for 1.2 s, typical behavior 1 Output FIFO size 8,191 samples shared among channels used Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/μs Glitch energy at midscale transition, ±10 V range 10 nV · s External Reference APFI 0 characteristics Input impedance 10 kΩ Coupling DC Protection, device on ±30 V Protection, device off ±15 V	Power-on state	±5 mV
USB $1.5 \text{ V for } 1.2 \text{ s, typical behavior}^1$ Output FIFO size $8,191 \text{ samples shared among channels used}$ Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) $2 \mu s$ Slew rate $20 \text{ V/}\mu s$ Glitch energy at midscale transition, $\pm 10 \text{ V}$ $10 \text{ nV} \cdot s$ range External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	Power-on/off glitch	
Output FIFO size 8,191 samples shared among channels used Data transfers $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PCIe/PXIe	1.5 V peak for 200 ms
Data transfers PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) $2 \mu s$ Slew rate 20 V/μs Glitch energy at midscale transition, $\pm 10 \text{ V}$ $10 \text{ nV} \cdot s$ External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	USB	1.5 V for 1.2 s, typical behavior ¹
PCIe/PXIe DMA (scatter-gather), programmed I/O USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) $2 \mu s$ Slew rate $20 V/\mu s$ Glitch energy at midscale transition, $\pm 10 V$ range $20 V/\mu s$ External Reference APFI 0 characteristics Input impedance $10 k\Omega$ Coupling DC Protection, device on $\pm 30 V$ Protection, device off $\pm 15 V$	Output FIFO size	8,191 samples shared among channels used
USB USB Signal Stream, programmed I/O AO waveform modes Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) $2 \mu s$ Slew rate $20 \text{ V/}\mu s$ Glitch energy at midscale transition, ±10 V range $10 \text{ nV} \cdot s$ External Reference APFI 0 characteristics Input impedance Coupling DC Protection, device on ±30 V Protection, device off ±15 V	Data transfers	
AO waveform modes $\begin{array}{c} \text{Non-periodic waveform, periodic waveform} \\ \text{regeneration mode from onboard FIFO,} \\ \text{periodic waveform regeneration from host} \\ \text{buffer including dynamic update} \\ \text{Settling time, full-scale step 15 ppm (1 LSB)} & 2 \ \mu \text{s} \\ \text{Slew rate} & 20 \ \text{V/}\mu \text{s} \\ \text{Glitch energy at midscale transition,} \pm 10 \ \text{V} \\ \text{range} \\ \text{External Reference} \\ \text{APFI 0 characteristics} \\ \text{Input impedance} & 10 \ \text{k}\Omega \\ \text{Coupling} & \text{DC} \\ \text{Protection, device on} & \pm 30 \ \text{V} \\ \text{Protection, device off} & \pm 15 \ \text{V} \\ \end{array}$	PCIe/PXIe	DMA (scatter-gather), programmed I/O
regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update Settling time, full-scale step 15 ppm (1 LSB) 2 μs Slew rate 20 V/ μs Glitch energy at midscale transition, $\pm 10 \text{ V}$ range External Reference APFI 0 characteristics Input impedance 10 $k\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	USB	USB Signal Stream, programmed I/O
Slew rate $20 \text{ V/}\mu\text{s}$ Glitch energy at midscale transition, $\pm 10 \text{ V}$ $10 \text{ nV} \cdot \text{s}$ range External Reference APFI 0 characteristics Input impedance $10 \text{ k}\Omega$ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	AO waveform modes	regeneration mode from onboard FIFO, periodic waveform regeneration from host
Glitch energy at midscale transition, $\pm 10 \text{ V}$ $10 \text{ nV} \cdot \text{s}$ range	Settling time, full-scale step 15 ppm (1 LSB)	2 μs
range	Slew rate	20 V/μs
		10 nV⋅s
Input impedance 10 kΩ Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	External Reference	
Coupling DC Protection, device on $\pm 30 \text{ V}$ Protection, device off $\pm 15 \text{ V}$	APFI 0 characteristics	
Protection, device on ±30 V Protection, device off ±15 V	Input impedance	10 kΩ
Protection, device off ±15 V	Coupling	DC
	Protection, device on	±30 V
Range ±11 V	Protection, device off	±15 V
	Range	±11 V

 $20\ V/\mu s$

Slew rate

Time period may be longer due to host system USB performance. Time period is longer during firmware updates.

AO Absolute Accuracy

Absolute accuracy at full-scale numbers is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Table 2. AO Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/ °C)	Reference Tempco (ppm/°C)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/ °C)	INL Error (ppm of Range)	Absolute Accuracy at Full Scale (µV)
10	-10	63	17	1	33	2	64	1,890

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

 $AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)$

 $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + GainError + GainErr$ ReferenceTempco · (TempChangeFromLastExternalCal)

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal)$ + INLError

Digital I/O/PFI

Static Characteristics

Number of channels	24 total, 8 (P0.<07>), 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	$50 \text{ k}\Omega$ typical, $20 \text{ k}\Omega$ minimum
Input voltage protection	± 20 V on up to two pins

Caution Stresses beyond those listed under the Input voltage protection specification may cause permanent damage to the device.

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<07>)
Port/sample size	Up to 8 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DI Sample Clock frequency	
PCIe/PXIe	0 to 10 MHz, system and bus activity dependent
USB	0 to 1 MHz, system and bus activity dependen
DO Sample Clock frequency	
PCIe/PXIe	
Regenerate from FIFO	0 to 10 MHz
Streaming from Memory	0 to 10 MHz, system and bus activity dependent

Regenerate from FIFO	0 to 10 MHz
Streaming from memory	0 to 1 MHz, system and bus activity dependent
Data transfers	
PCIe/PXIe	DMA (scatter-gather), programmed I/O
USB	USB Signal Stream, programmed I/O
Digital line filter settings	160 ns, 10.24 μs, 5.12 ms, disable

PFI/Port 1/Port 2 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Recommended Operating Conditions

Input high voltage (V _{IH})	
Minimum	2.2 V
Maximum	5.25 V
Input low voltage (V _{IL})	
Minimum	0 V
Maximum	0.8 V
Output high current (I _{OH})	
P0.<07>	-24 mA maximum
PFI <015>/P1/P2	-16 mA maximum
Output low current (I _{OL})	
P0.<07>	24 mA maximum
PFI <015>/P1/P2	16 mA maximum

Digital I/O Characteristics

Positive-going threshold (VT+)	2.2 V maximum
Negative-going threshold (VT-)	0.8 V minimum
Delta VT hysteresis (VT+ - VT-)	0.2 V minimum

 I_{IL} input low current ($V_{IN} = 0 \text{ V}$) -10 μA maximum

 I_{IH} input high current ($V_{IN} = 5 \text{ V}$) $250~\mu A$ maximum

Figure 5. P0.<0..7>: I_{OH} versus V_{OH}

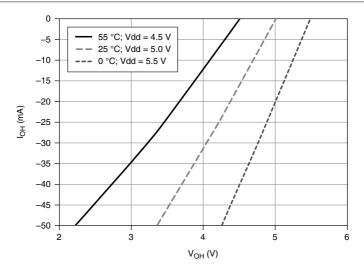
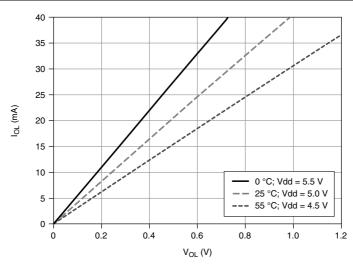



Figure 6. P0.<0..7>: I_{OL} versus V_{OL}

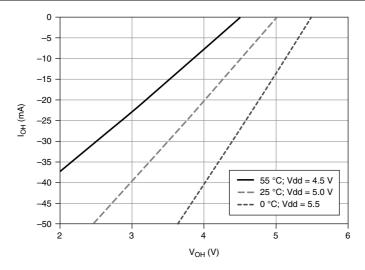
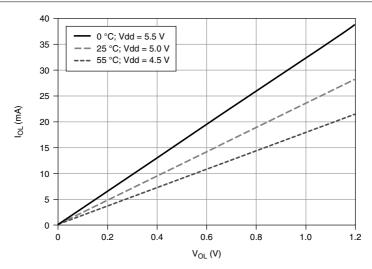



Figure 8. PFI <0..15>/P1/P2: I_{OL} versus V_{OL}

General-Purpose Counters

Number of counter/timers	4
Resolution	32 bits

Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	
PCIe/USB	0 MHz to 25 MHz
PXIe	0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR <a,b></a,b>
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	
PCIe	Any PFI, RTSI, analog trigger, many internal signals
PXIe	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, analog trigger, many internal signals</a,b>
USB	Any PFI, analog trigger, many internal signals
FIFO	127 samples per counter
Data transfers	
PCIe/PXIe	Dedicated scatter-gather DMA controller for each counter/timer, programmed I/O
USB	USB Signal Stream, programmed I/O

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Phase-Locked Loop (PLL)

Number of PLLs

Table 3. Reference Clock Locking Frequencies

1

Reference Signal	PCle Locking Input Frequency (MHz)	PXIe Locking Input Frequency (MHz)	USB Locking Input Frequency (MHz)
PXIe_DSTAR <a,b></a,b>	_	10, 20, 100	_
PXI_STAR	_	10, 20	_
PXIe_CLK100	_	100	_
PXI_TRIG <07>	_	10, 20	_
RTSI <07>	10, 20	_	_
PFI <015>	10, 20	10, 20	10

Output of PLL

100 MHz Timebase; other signals derived from 100 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source	
PCIe	Any PFI, RTSI
PXIe	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
USB	Any PFI
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock

Digital waveform generation (DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition (DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

	30
Input Source	
PCIe	RTSI <07>2
PXIe	PXI_TRIG <07>, PXI_STAR, PXIe_DSTAR <a,b></a,b>
USB	None
Output destination	
PCIe	RTSI <07>2
PXIe	PXI_TRIG <07>, PXIe_DSTARC
USB	None
Output selections	10 MHz Clock; frequency generator output; many internal signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

 $^{^2}$ $\,$ In other sections of this document, RTSI refers to RTSI <0..7> for NI PCIe-6363 or PXI_TRIG <0..7> for NI PXIe-6363.

Bus Interface

PCIe	
Form factor	x1 PCI Express, specification v1.1 compliant
Slot compatibility	x1, x4, x8, and x16 PCI Express slots ³
DMA channels	8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3
PXIe	
Form factor	x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3
All PXIe devices may be installed in	PXI Express slots or PXI Express hybrid slots.
USB	
USB compatibility	USB 2.0 Hi-Speed or full-speed ⁴
USB Signal Stream	8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

³ Some motherboards reserve the x16 slot for graphics use. For PCI Express guidelines, refer to *ni.com/pciexpress*.

⁴ Operating on a full-speed bus results in lower performance, and you might not be able to achieve maximum sampling/update rates.

Power Requirements

Caution The protection provided by the device can be impaired if the device is used in a manner not described in the X Series User Manual.

PCIe		
Without disk drive power of	onnector installed	
+3.3 V	4.6 W	
+12 V	5.4 W	
With disk drive power con	nector installed	
+3.3 V	1.6 W	
+12 V	5.4 W	
+5 V	15 W	
PXIe		
+3.3 V	1.6 W	
+12 V	19.8 W	

Caution The USB device must be powered with an NI offered AC adapter or a National Electric Code (NEC) Class 2 DC source that meets the power requirements for the device and has appropriate safety certification marks for country of use.

USB	
Power supply requirements	11 to 30 VDC, 30 W, 2 positions 3.5 mm pitch pluggable screw terminal with screw locks similar to Phoenix Contact MC 1,5/2-STF-3,5 BK
Power input mating connector	Phoenix Contact MC 1,5/2-GF-3,5 BK or equivalent

Current Limits

Caution Exceeding the current limits may cause unpredictable device behavior.

PCIe	
Without disk drive power connector insta	alled
P0/PFI/P1/P2 and +5 V terminals combined	0.59 A max

**** 4 4 4				
With dis	c drive	power	connector	ınstalled

+5 V terminal (connector 0)	1 A max ⁵
+5 V terminal (connector 1)	1 A max ⁵
P0/PFI/P1/P2 combined	1 A max
PXIe	
+5 V terminal (connector 0)	1 A max ⁵
+5 Vterminal (connector 1)	1 A max ⁵
P0/PFI/P1/P2 and +5 V terminals combined	2 A max
USB	
+5 V terminal	1 A max ⁵
P0/PFI/P1/P2 and +5 V terminals combined	2 A max

Physical Characteristics

PCIe	9.9×16.8 cm $(3.9 \times 6.6$ in.) (half-length)
PXIe	Standard 3U PXI
Enclosure dimensions (includes connectors)	
USB	
Mass termination	$18.5 \times 17.3 \times 3.6 \text{ cm} (7.3 \times 6.8 \times 1.4 \text{ in.})$
Screw terminal	$26.4 \times 17.3 \times 3.6 \text{ cm } (10.4 \times 6.8 \times 1.4 \text{ in.})$
BNC	$20.3 \times 18.5 \times 6.8 \text{ cm } (8.0 \times 7.3 \times 2.7 \text{ in.})$
Weight	
PCIe	161 g (5.6 oz)
PXIe	205 g (7.2 oz)
USB Mass Termination	965 g (2 lb 2.1 oz)

 $^{^{5\,\,}}$ Has self-resetting fuse that opens when current exceeds this specification.

1.413 kg (3 lb 1.8 oz)
1.52 kg (3 lb 5 oz)
1 68-pin VHDCI
1 68-pin VHDCI
64 screw terminals
20 BNCs and 30 screw terminals

Table 4. PCIe/PXIe Mating Connectors

Manufacturer, Part Number	Description
MOLEX 71430-0011	68-Pos Right Angle Single Stack PCB-Mount VHDCI (Receptacle)
MOLEX 74337-0016	68-Pos Right Angle Dual Stack PCB-Mount VHDCI (Receptacle)
MOLEX 71425-3001	68-Pos Offset IDC Cable Connector (Plug) (SHC68-*)

PCIe disk drive power connector	Standard ATX peripheral connector (not serial ATA)
USB screw terminal wiring/BNC screw terminal wiring	16-24 AWG

Calibration

Recommended warm-up time	15 minutes
Calibration interval	2 years

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth 1	11 V, Measurement Category I
--------------------	------------------------------

Caution Do not use for measurements within Categories II, III, or IV.

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, 0.3 g _{rms}
Nonoperating	5 to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Environmental

Operating temperature	
PCIe	0 to 50 °C
PXIe	0 to 55 °C
USB	0 to 45 °C
Storage temperature	-40 to 70 °C
Operating humidity	10 to 90% RH, noncondensing
Storage humidity	5 to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m

Indoor use only.

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, refer to the *Online Product* Certification section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

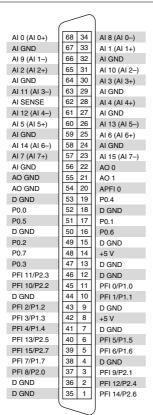
Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

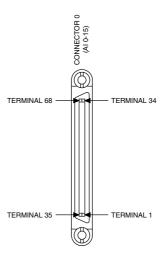
Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers

For additional environmental information, refer to the Minimize Our Environmental Impact web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document

Waste Electrical and Electronic Equipment (WEEE)


EU Customers At the end of the product life cycle, all NI products must be X disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.


电子信息产品污染控制管理办法(中国 RoHS)

(A) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

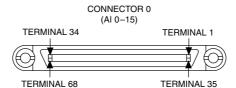

Device Pinouts

Figure 9. NI PCIe/PXIe-6361 Pinout

AI 0 (AI 0+)	68	34	Al 8 (Al 0–)	
AI GND	67	33	Al 1 (Al 1+)	
Al 9 (Al 1–)	66	32	AI GND	
Al 2 (Al 2+)	65	31	Al 10 (Al 2–)	
AI GND	64	30	Al 3 (Al 3+)	
Al 11 (Al 3–)	63	29	AI GND	
AI SENSE	62	28	Al 4 (Al 4+)	
Al 12 (Al 4–)	61	27	AI GND	
Al 5 (Al 5+)	60	26	AI 13 (AI 5-)	
AI GND	59	25	Al 6 (Al 6+)	
AI 14 (AI 6-)	58	24	AI GND	
Al 7 (Al 7+)	57	23	Al 15 (Al 7–)	
AI GND	56	22	AO 0	
AO GND	55	21	AO 1	
AO GND	54	20	APFI 0	
D GND	53	19	P0.4	
P0.0	52	18	D GND	
P0.5	51	17	P0.1	
D GND	50	16	P0.6	
P0.2	49	15	D GND	
P0.7	48	14	+5 V	
P0.3	47	13	D GND	
PFI 11/P2.3	46	12	D GND	
PFI 10/P2.2	45	11	PFI 0/P1.0	
D GND	44	10	PFI 1/P1.1	
PFI 2/P1.2	43	9	D GND	
PFI 3/P1.3	42	8	+5 V	
PFI 4/P1.4	41	7	D GND	
PFI 13/P2.5	40	6	PFI 5/P1.5	
PFI 15/P2.7	39	5	PFI 6/P1.6	
PFI 7/P1.7	38	4	D GND	
PFI 8/P2.0	37	3	PFI 9/P2.1	
D GND	36	2	PFI 12/P2.4	
D GND	35	1	PFI 14/P2.6	

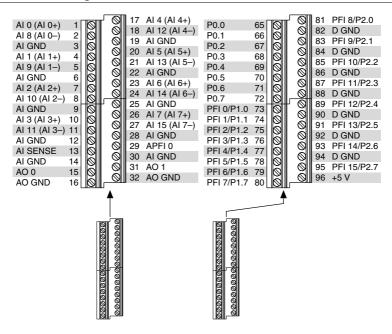
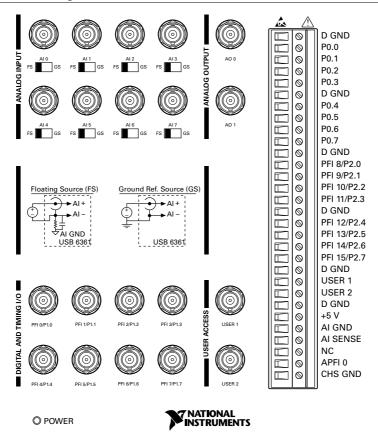



Figure 12. NI USB-6361 BNC Front Panel and Pinout

Refer to the *NI Trademarks* and *Logo Guidelines* at ni.com/trademarks for information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: *Helps-Patents* in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, PAR 252.227-7014, and DFAR 252.227-7015.