DEVICE SPECIFICATIONS NI PXIe-6738

32-Channel High-Density Analog Output

This document lists the specifications for the NI 6738 analog output device. The following specifications are typical at 25 °C unless otherwise noted.

Analog Output

Number of channels	. 32 voltage outputs
Resolution	. 16 bits, 1 in 65,536
DNL	.±1.0 LSB maximum
Unscaled data format ¹	. Unsigned integer (0 to 65,535)
Monotonicity	. 16 bits
Accuracy	. Refer to the AO Absolute Accuracy table
Maximum update rate (using local FIFO ²)	
1 channel	. 1 MS/s
8 channels (1 channel per bank) ³	. 1 MS/s
32 channels ³	. 350 kS/s
Timing accuracy	. 50 ppm of sample rate
Timing resolution	. 10 ns
Output range	.±10 V
Output coupling	. DC
Output impedance	. 0.2 Ω
Output current drive	.±10 mA
Overdrive protection	.±15 V
Overdrive current	. 15 mA

¹ Used for writing unscaled or raw data and covers the range from negative full scale (0) to positive full scale (65,535).

³ All analog output channels are grouped into banks, as shown in the *Device Pinouts* section. Each bank consists of four AO channels using one DAC. Any channels being used within a single bank will update simultaneously.

² These numbers apply to continuous waveform generation using onboard memory only, which allows for the highest update rate by doing a single transfer of data over the bus. The maximum update rate in FIFO mode does not change regardless of the number of devices in the system.

Power-on state	±200 mV
Power-on/off glitch	2.5 V peak for 100 ms
FIFO buffer size	65,535 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
AO waveform modes	
Nonperiodic waveform	
• Periodic waveform regeneration mode fr	om onboard FIFO
• Periodic waveform regeneration from ho	st buffer including dynamic update
Settling time, full scale step	$15 \ \mu s \ to \pm 4 \ LSB$
Slew rate	3.0 V/µs
Noise	1.0 mV _{rms} , DC to 1 MHz
AO update glitch	
Magnitude	3.0 mV
Duration	10 μs
Glitch energy	3 nVs
Channel crosstalk	65 dB with SHC68-68-A2 cable (generating a 10 V, 100 point sinusoidal at 100 kHz on the reference channel)
Output stability	Any passive load

Output stability Any passive load

Note AO update glitch is the glitch energy that occurs on all channels on the same bank as the result of a channel update, regardless of value. For example, if you update the value of AO 0, all channels within that bank AO <0..3> will experience this glitch regardless of whether their output voltages change.

Absolute Accuracy

Absolute accuracy at full-scale number is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/ °C)	Reference Tempco (ppm/°C)	Offset Tempco (ppm)	Residual Offset Error (ppm of Range)	INL Error (ppm of Range)	Absolute Accuracy at Full Scale (μV)
10	-10	109	12	1	4	95	64	2,940

Table 1. AO Absolute Accuracy

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

AbsoluteAccuracy = OutputValue · (GainError) + Range · (OffsetError) GainError = ResidualGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal) OffsetError = ResidualOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INL Error

Digital I/O/PFI

Static Characteristics

Number of channels	10 total, 2 (P0.<01>), 8 (PFI <07>/P1.<07>)
Ground reference	D GND
Direction control	. Each terminal individually programmable as input or output
Pull-down resistor	50 k Ω typical, 20 k Ω minimum
Input voltage protection ¹	±20 V on up to two pins

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<01>)
Port/sample size	Up to 2 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DI Sample Clock frequency	0 to 10 MHz, system and bus activity dependent
DO Sample Clock frequency	
Regenerate from FIFO	0 to 10 MHz
Streaming from memory	0 to 10 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), programmed I/O
Digital line filter settings	160 ns, 10.24 μs, 5.12 ms, disable

¹ Stresses beyond those listed under *Input voltage protection* may cause permanent damage to the device.

PFI/Port 1 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Recommended Operating Conditions

Input high voltage (V _{IH})	2.2 V minimum, 5.25 V maximum
Input low voltage (V _{IL})	0 V minimum, 0.8 V maximum
Output high current (I _{OH})	
P0.<01>	24 mA maximum
PFI <07>/P1<07>	16 mA maximum
Output low current (I _{OL})	
P0.<01>	24 mA maximum
PFI <07>/P1<07>	16 mA maximum

Electrical Characteristics

Level	Minimum	Maximum
Positive-going threshold (VT+)	—	2.2 V
Negative-going threshold (VT-)	0.8 V	—
Delta VT hysteresis (VT+ - VT-)	0.2 V	—
I_{IL} input low current ($V_{in} = 0 V$)	—	-10 μA
I_{IH} input high current ($V_{in} = 5 V$)	—	250 μΑ

Digital I/O Characteristics

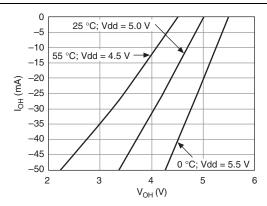
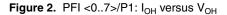



Figure 1. P0.<0..1>: I_{OH} versus V_{OH}

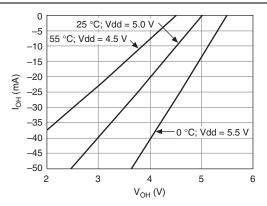


Figure 3. P0.<0..1>: I_{OL} versus V_{OL}

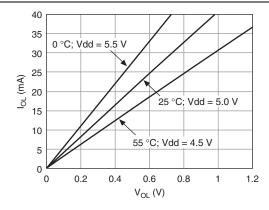
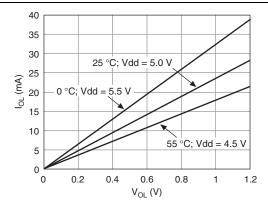



Figure 4. PFI <0..7>/P1: I_{OL} versus V_{OL}

Timing I/O

Number of counter/timers	4
Resolution	32 bits
Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 25 MHz

Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, many internal signals</a,b>
FIFO	127 samples per counter
Data transfers	Dedicated scatter-gather DMA controller for each counter/timer, programmed I/O

Phase-Locked Loop (PLL)

Number of PLLs 1

Reference Signal	Locking Input Frequency (MHz)
PXIe_DSTAR <a,b></a,b>	10, 20, 100
PXI_STAR	10, 20
PXIe_CLK100	100
PXI_TRIG <07>	10, 20
PFI <07>	10, 20

Output of PLL	100 MHz Timebase; other signals derived from
-	100 MHz Timebase including 20 MHz and
	100 kHz Timebases

External Digital Triggers

Source	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
Polarity	Software-selectable for most signals
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Digital waveform generation	
(DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition	
(DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-To-Device Trigger Bus

Input source	PXI TRIG <07>, PXI STAR,
	PXIe_DSTAR <a,b></a,b>
Output destination	PXI_TRIG <07>, PXIe_DSTARC
Output selections	10 MHz Clock; many internal signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	7 DMA, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

Power Requirements

Caution The protection provided by the NI PXIe-6738 can be impaired if it is used in a manner not described in the user documentation.

+3.3 V	.3.0 \	N
+12 V	.14.0	W

Current Limits

/1\

Caution Exceeding the current limits may cause unpredictable behavior by the device and/or chassis.

+5 V terminal (connector 0).....1 A maximum¹

P0/P1/PFI and +5 V terminals combined1.4 A maximum

¹ Has a self-resetting fuse that opens when current exceeds this specification.

Physical

Weight	. 164 g (5.8 oz)
--------	------------------

I/O connector 1 68-pin VHDCI

Calibration

Recommended warm-up time......15 minutes

Calibration interval 2 years

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel-to-earth±11 V, Measurement Category I

Channel-to-channel......±22 V, Measurement Category I

Caution Do not use this module for connection to signals or for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O (Other) are equivalent. The input circuits are not intended for direct connection to the MAINs building installations of Categories CAT II, CAT III, or CAT IV.

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse	
	(Tested in accordance with IEC 60068-2-27.	
	Meets MIL-PRF-28800F Class 2 limits.)	
Random vibration		
Operating	. 5 to 500 Hz, 0.3 g _{rms}	
Nonoperating	. 5 to 500 Hz, 2.4 g _{rms}	
	(Tested in accordance with IEC 60068-2-64.	
	Nonoperating test profile exceeds the	
	requirements of MIL-PRF-28800F, Class 3.)	

Environmental

The NI 6738 is intended for indoor use only.

Maximum altitude......2,000 meters

Note Clean the device with a soft, non-metallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.

Operating Environment

Ambient temperature range	0 to 55 °C	
	(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F	
	Class 3 low temperature limit and	
	MIL-PRF-28800F Class 2 high temperature limit.)	
Relative humidity range	10 to 90% RH, noncondensing (Tested in accordance with IEC 60068-2-56.)	

Storage Environment

Ambient temperature range	bient temperature range40 to 71 °C		
	(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)		
Relative humidity range	5 to 95% RH, noncondensing (Tested in accordance with IEC 60068-2-56.)		

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use; for radio equipment; and for telecommunication terminal equipment:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications refer to the *Online Product Certification* section.

CE Compliance $\zeta \in$

This product meets the essential requirements of applicable European Directives as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Online Product Certification

To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/ environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The National Instruments website is your complete resource for technical support. At ni.com/ support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

CONNECTOR 0 (AO 0–31)				
		` 	\sim)
¥	AO GND 30/31	68	34	AO 31
AO Bank	AO 30	67	33	AO GND 28/29
AO	AO 29	66	32	AO 28
×	AO GND 26/27	65	31	AO 27
AO Bank	AO 26	64	30	AO GND 24/25
AO	AO 25	63	29	AO 24
~	AO GND 22/23	62	28	AO 23
AO Bank	AO 22	61	27	AO GND 20/21
AO	AO 21	60	26	AO 20
	AO GND 18/19	59	25	AO 19
AO Bank	AO 18	58	24	AO GND 16/17
AOE	AO 17	57	23	AO 16
	AO GND ¹	56	22	AO 15
AO Bank	AO GND 14/15	55	21	AO 14
O B	AO 13	54	20	AO GND 12/13
	AO 12	53	19	AO GND ¹
AO Bank	AO 11	52	18	AO GND 11
е О	AO 10	51	17	AO 9
<	AO GND 8/9/10	50	16	AO 8
h	AO GND 6/7	49	15	AO 7
AO Bank	AO 6	48	14	AO GND 4/5
Ă	AO 5	47	13	AO 4
¥	AO GND 2/3	46	12	AO 3
Bank	AO 2	45	11	AO GND 0/1
AO	AO 1	44	10	AO 0
	D GND ¹	43	9	PFI 7/P1.7
	D GND PFI 6/7	42	8	PFI 6/P1.6
	D GND PFI 4/5	41	7	PFI 5/P1.5
	PFI 4/P1.4	40	6	PFI 3/P1.3
	D GND PFI 2/3	39	5	PFI 2/P1.2
	PFI 1/P1.1	38	4	PFI 0/P1.0
	D GND PFI 0/1	37	3	P0.1
	D GND P0.0/0.1	36	2	P0.0
	D GND ¹	35	1	+5 V
		\subseteq	\sim	J

Figure 5. NI PXIe-6738 Pinout

¹ No connect when using the SHC68-68-A2 cable.

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for more information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help>Patents** in your software, the patents.txt file on your media, or the National Instruments Patents Notice at ni.com/patents.You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-1014, and DFAR 252.227-1015.

© 2015 National Instruments. All rights reserved.