Specifications:

Front Panel Display

Analog Output

Power Supply Software

Dimensions

Communication Interfaces

The PSY-201 is a deterministic polarization controller that can generate and maintain any state of polarization (SOP), regardless of the input SOP. It combines General Photonics' patented polarization controller, in-line polarimeter, and control algorithm into an instrument that functions as both a polarization state generator and a polarization analyzer. The generated SOP and the corresponding Poincaré Sphere representation can be displayed on a computer screen via USB interface. The output SOP can be specified by inputting Stokes parameters using the front panel keypad or by manually tuning the SOP to reach a specific point on the Poincaré sphere or to reach an optimum value of a polarization-dependent metric. Once a desired output SOP is found, the instrument can automatically maintain this SOP against input SOP fluctuations. Another attractive feature is that the user can generate any of 6 distinct SOPs (0°, 90°, ± 45°, RHC and LHC) for Mueller matrix calculations, or select any of the 6 states at the touch of a button. Furthermore, the instrument can generate several preprogrammed SOP traces

that emulate certain common polarization variations. The instrument can also function as a polarization scrambler, generating SOP scans with user-defined pattern and speed. Finally, with the internal polarization controller disabled, PolaFlexTM can function as an inline polarimeter, displaying the instantaneous SOP and DOP of the input light beam. The PSY-201 replaces the popular PSY-101, with improved accuracy, speed, and functionalities. New features include long-term SOP monitoring, SOP markers for angle measurement, and a "SOP replay" function in sphere display mode, as well as extended triggering capability in oscilloscope mode. It puts all of the tools necessary for polarization management at your fingertips.

Operating Wavelength Range	1480 to 1620 nm or 1280 to 1340 nm	
Sampling Rate (max.)	4.0M SOP samples/s	
Analog Bandwidth ¹	1MHz	
SOP Settling Time	1ms at stable input SOP	
SOP Stability (Input Power > -25 dBm, DOP > 95%)	0.1° with stable input SOP 0.5° with input SOP variation $< 2 \pi/s$ 2° with input SOP variation $< 10 \pi/s$	
SOP Measurement/Generation Uncertainty	±0.25° after user calibration, with input > -25 dBm	
DOP Uncertainty	$\pm 2\%$ using built-in calibration, with input > -25 dBm $\pm 0.5\%$ after user calibration, with input > -25 dBm	
Input Stokes Parameter Resolution	0.001	
Optical Power Uncertainty	±0.25 dB	
Insertion Loss	1.6 dB max. at center wavelength	
Return Loss	55 dB (APC connector), 45 dB (PC connector)	
PDL	< 0.25 dB	
PMD	< 0.1 ps	
Operating Power Range	-35 dBm to +10 dBm	
Optical Power Damage Threshold	300 mW	ľ
Operating Temperature	0 °C to 40 °C	
Storage Temperature	-20 °C to 60 °C	

Note: Loss specifications are referenced without connectors. Unless otherwise noted, specifications listed in table apply for standard 1480-1620nm or 1280-1340nm operation at 23±5°C, at power levels >-25 dBm.

Graphic OLED

software RS-232, Ethernet, GPIB 0 to 5 V max range, user configurable

100 - 240 VAC, 50 - 60 Hz

PolaView[™] (included)

1. For input power > -10 dBm. At lower power levels, bandwidth may change due to automatic gain control.

Features:

- · 4 MHz SOP sampling rate
- · 1 MHz analog bandwidth
- · 45 dB input power dynamic range
- · Real-time Poincaré Sphere display
- · High-speed SOP generation and tracking
- · High speed analog output of SOP & DOP

Applications:

- · Receiver polarization sensitivity analysis
- · System SOP/DOP monitoring
- · PER measurement
- · Polarization generation and stabilization
- · Sensor system characterization
- · 100G system polarization characterization

-13-

High Speed USB 2.0 (30 MB/s data rate) for PolaView

Monitor voltage for DOP, S1, S2, S3, power or dREF

2U, 19" half rack width 14" (L) x 8.5" (W) x 3.5" (H)

Emulation Instruments for System and Network Characterization

Polarization Synthesizer/Analyzer - PolaFlex™

Application Example:

Coherent Receiver Polarization Sensitivity Test

Sample setup for a coherent receiver performance test using a polarization stabilizer (POS-202) and a polarization synthesizer (PSY-201).

- 1. Use polarization stabilizer (POS-202) to lock the polarization of one receiver input (local oscillator input).
- 2. Use polarization synthesizer (PSY-201) to control the polarization of the other receiver input to find the SOP that maximizes the receiver power reading.
- 3. Lock the PSY-201 output at that SOP to eliminate polarization fluctuations in the SM fiber. Test receiver performance.
- 4. Use PSY-201 to find or switch to the orthogonal SOP (minimize receiver power reading).
- 5. Lock PSY-201 output at that SOP to eliminate polarization fluctuations. Test receiver performance.

Typical Performance Data:

Polarization stabilization

Figure 1. Input polarization pattern: triangle Figure 3. Poincaré sphere pole state generation wave scramble at 1 Hz, taken over 20 sec

Special polarization state/trace generation

Figure 2. Output polarization stabilized by Figure 4. Trace Scans PSY-201 against the same polarizationscrambled input, taken over 20 sec

Ordering Information:

AVONDO

Scrambling

Figure 5. Triangle scrambling trace, 1 Hz after 1 minute

Figure 6. Discrete scrambling, 100 Hz after 1 minute

Accessories:

 $\mathsf{NoTail}^\mathsf{TM}$ $\mathsf{Polarizer}$ $\mathsf{NoTail}^\mathsf{TM}$ $\mathsf{Isolator}$ Rack Mount Kit

p. 90 p. 91 p. 83